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1    Introduction 

Under this grant we have attemted to simulate supersonic reactive flows with high order 

accuracy methods. The scientific reason for using high order methods is that simulations 

of supersonic reactive flows require long time integrations and the resolution of fine scales 

of the flow. It is well known that high order accuracy methods are mandatory in satisfying 
these requirements. 

Our main codes are spectral, i.e. based on expansions in global polynomials. The two 

issues -lb at .we Kd ve- adfirieHsefi ,1 JLDuiheJast Jew,Zvea!r3_. ani' d isfiorft} oitit^^esiafiret geometri cal^ _. 
flexibility. To adapt spectral methods to discontinuities we used low pass filters to stabilize 

the scheme and a postprocessing of the solution to recover the accuracy. We have resolved 

the Gibbs phenomenon and showed that a proper postprocessing can recover spectral 

accuracy in smooth regions of the flow. The theory is not a constructive one in the sense 

that it does not discuss optimal methods for postprocessing. 

A great deal of work has been done in the last decade in adaptive spectral methods to 

complex domains. The idea here is to use multidomain techniques where spectral methods 

are used locally at every subdomain. Good sets of collocation points has been found for 

triangles and tetrahydra, that enable the construction of interpolation polynomials in those 

subdomains. The main difficulty is the imposition of interface boundary conditions. We 

have started to study an alternative of the DG method. We look for a discontinuous 

Collocation method, which is more natural in the framework of spectral methods. 

There are uncertainties associate with any aspect of computations of reactive flows. 

We started to study the effects of uncertainties in initial conditions on the steady state 



supersonic flows in the double-throated nozzle using the polynomial chaos expansions. The 

results obtained are summarized in Section 4. 

In the applications part we considered two major applications: The first is simulations 

of Shock-Induced Turbulence Mixing and the second is the computational study of flame- 

holders in SCRAMJETs, mainly recessed cavity flameholders. For the first subject the 

principal research objective has been to develop new state-of-the-art high-order accurate 

numerical methods for the multi-dimensional numerical simulations of the fully-nonlinear 

evolution of hydrodynamic instabilities and late-time turbulent mixing generated by single- 

and multi-mode Richtmyer-Meshkov, Rayleigh-Taylor, and Kelvin-Helmholtz instabilities. 

This will be discussed in Section 6. 

In the second application we considered supersonic combustion problems in recessed 

cavities in order to establish the efficacy of recessed cavity flame-holders. Recessed cavities 

provide a high temperature, low speed recirculating region that can support the produc- 

tion of radicals created during chemical reactions. This stable and efficient flame-holding 

performance by the cavity is achieved by generating a recirculation region inside the cav- 

ity where a hot pool of radicals forms resulting in reducing the induction time and thus 

obtaining the auto-ignition. Experiments have shown that such efficiency depends on the 

geometry of the cavity such as the degree of the slantness of the aft wall and the length to 

depth ratio of cavity. This will be discussed in Section 7. 

2    Postprocessing Techniques 

Sutficienc conditions for the igmovalof theGibbs'plitiibffienbh Were'grv^^ in [38]. Consider 

a function f{x) € L^[—1,1] and assume that there is a subinterval [a, b] C [—1,1] in which 

f{x) is analytic. (For convenience we define the local variable, ^ = —1 -I- 2|5^ such that 

ii a < X < b then — 1 < ^ < 1.) Let the family {^^(a:)}, be orthonormal under a scalar 

product (•, •), and denote the finite expansion of f{x) in this basis by /AT(a;), 

fN{x) = f:(/,^fc)^fc(x). 
A:=0 

Let the family {$^(0} be Gibbs complementary to the family {^^(a:)} (see [38] for its 

exact definition), then the postprocessed reconstruction given by 

1=0 

converges exponentially to f{x), i.e. 

mSix\f{x)-gN{x)\   <   e"*^,        q > 0. 
a<x<o 



In a series of papers it has been shown that the Gegenbauer polynomials 

which are orthonormal under the inner product < •, • >A defined by 

are Gibbs complementary to all commonly used spectral approximations. 

The Gegenbauer method is not robust, it is sensitive to roundoff errors and to the choice 

of the parameters A and m. A different implementation of the Gegenbauer postprocessing 

method has been suggested recently by Jung and Shiz^al [53]. To explain the differences 

between the direct Gegenbauer method and the inverse Gegenbauer method suggested in 

[53], consider the case of the Fourier expansion of a nonperiodic problem. The Fourier 

approximation /^?(x) of f{x) 

fN{x) =  E Ae''"'' 
fe=-iV 

where fk = (f{x),e^'''^^j, and we construct 

m 

fnix)   =   Y.9iChx), 
1=0 

where gi =< fN,Ci'{x) >>. In the Inverse method we use the relationship 

and invert to find gi. Thus if we define the matrix 

Wki = {C^{x),e"'^^)F = C (1 - x''f-"^Cl{xy''''^dx, 
J —1 

and/fc=:(/,e''='^^), then 

m 

1=0 

The method seems to be less sensitive to roundoff errors or to the choice of parameters. 

In particular if the original function is a polynomial, the inverse method is exact. 

Another approach for the post processing issue involves rational functions. A rapidly 

converging approximation to finite Fourier series has been studied by defining a rational 

function which denominator and numerator are represented in finite Fourier sum.   Fade 
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rational approximations have been considered as one of the popular computational methods 

of representing functions, especially rapidly converging functions since it was proposed by 

H. Pade in 1892 [8, 49]. They are generally more efficient than polynomial approximations 

with a reduced number of operations for the same accuracy [23, 25, 26]. 

The methods discussed before require the knowledge of the position of discontinuity, 

however with no knowledge of the singularity, Pade reconstruction recovers back a non- 

oscillatory solution successfully with a reduced overshoot at the singularity. It is due to 

the fact that the possible existence of poles of some order for the denominator of Pade 

approximant allows to give a better approximation to the functions exhibiting singular 

behaviors such as large gradient and discontinuity. 

Geer and his coworkers [26], suggested a way of implementing the rational trigonometric 

approximations for even or odd 27r-periodic piecewise smooth functions and also a way of 

applying this method to the solution of the initial boundary value problem heat equation. 

In their work, Fourier-Pade approximants are defined in a nonlinear way such that the 

relation between the coefficients of the rational approximations and the Fourier coefficients 

involves a necessary procedure of calculating the integration of rational functions, which 

makes the numerical scheme relatively complicated. In [25], Fourier expansion is treated as 

a Laurent expansion, and using Fourier-Pade rational approach the spectral convergence is 

obtained up to the discontinuity by subtracting off the jump from the Fourier data, which 

requires the advance knowledge not only of the position of the singularity, but also the 
magnitude of the jump. 

In our work, we have designed two Fourier-Pade methods considering the general case of 

■piecewise analytic functions mth no advanceJOTO<^^ o_f_ 

implementing Fourier-Pade Galerkin and Fourier-Pade collocation methods are developed 

and applied to simulate the solutions of nonlinear partial differential equations. For the 

hyperbolic partial differential equations such as Burgers' equation, an initially smooth 

function can evolve into shock in time for inviscid case and large gradient for viscous case. 

Therefore the standard spectral simulations exhibit the Gibbs phenomenon that degrade 

the accuracy of the numerical solutions in time. From accurate Fourier data computed by 

Fourier method, we applied the Fourier-Pade reconstruction as a post-processing. After the 

post-processing, the computational results show successful reduction of the non-physical 

oscillations in the standard spectral solutions of the one dimensional inviscid Burgers' 

equation and the two dimensional inviscid Boussinesq convection flows. Especially, the 

numerical results for the Boussinesq convection equation are demonstrated in figures 20 

and 23. Further study has to be established to find the optimal relation between the degrees 

of the polynomial of the Pade approximants and the number of the Fourier coefficients. 



3    Multi-Domain Methods 

To give spectral methods flexibility to handle complex geometries we advocate the use of 

multidomain methods with penalty type interface conditions, i.e. the boundary conditions 

are imposed only in a weak form. 

We consider two interface conditions, i.e. 

1. The averaging method, in which the interface conditions are obtained by averaging 

the state vectors of the two adjacent domains, and 

2. The Penalty method in conservative form in which the interface conditions are sat- 

isfied only in a weak form, leaving the approximations not necessarily continuous at 

the interfaces. 

In the following we will give the penalty interface conditions for the Euler and Navier- 

Stokes equations and also show that the averaging method is a subset of the penalty 

method. 

Consider the inviscid part only, in the x-direction in the interval — 1 < a; < 1, i.e., 

For simplicity, assume that we have two domains in this interval with the interface at 

X = 0, qif{x, t) denotes the numerical solution in the left domain x <0 and qj^ix, t) in the 

right domain x > 0. Note that the numerical solution is composed of two polynomials of 
different orders. The^^Legendre spee^rslpenalty^meiffiDd-^f giVGn b^^ :. ^:: .;    ._ :. 

dQN  ,  dl},F{ql,)    _ j 
~W^       dx -   ^WA.(-1'*)) + 

rig;v(x)[/+(9^(0,t)) - /+(g^(0,t))] + 

r2QN{x)[r{qN{^.t)) - /-(?L'(0,t))], 

-gf + Q~^     -    B{q^{l,t)) + 

r3QM{x)[r{q'i^iO,t)) - r{q'AO,t))] + 

nQM{x)[f-{q'^{0,t)) - riqUOM (2) 

where B is a boundary operator at the end points, i.e., x = ±1 and /j^ and Ijj^ are the 

Legendre interpolation operators for the left and right domains respectively. . The positive 

and negative fluxes /"*" and /" are defined by 

f^ = I SA'^S-'dq, (3) 



with 
BF 

^=^ = SA5-. (4) 

The Jacobian matrix A is assumed to be symmetric. A"*" and A~ are the diagonal matrices 

composed of positive and negative eigenvalues of A respectively. QN{X) and QM{^) are 

polynomials of orders A'' and M respectively such that they are zero at all the collocation 

points except the interface points x = Q (for example QN{X) = 1^2^ , 0 < a; < 1 

where Ti^{x) is the Chebyshev polynomial of degree N). The penalty parameters TI,T2,TZ 

and T4 are all constants. Since we are interested only in the interface conditions, we 

ignore the boundary operator B at x = ±1. Define the discrete scalar product {p,q)N = 

T,iLoP^{^i)Q{^i)<^i- <^i is the weight in the Gauss-Lobatto-Legendre quadrature formula. 
With the discrete product, the energy E{t) is defined by E{t) = {qj^{x,t),qj^{x,t))!<f + 

{qM{x,t),qj^^{x,t))M- The stability conditions of penalty parameters are given by the 
following theorem: 

Theorem 1 The energy is bounded by the initial energy of the system if the following 

conditions are satisfied ; 

2a;^ri<l,    2ui,T2>l,     2U^^T3 <-1,     2u)^n>-l, 

^irn - ^MT3 = 1:    ^NT2 - (^MT4 = 1- (5) 

The penalty method in the case of the 2-D Euler equation is given by 

-^ + Q^ + Qy    =   n,3'3(a:,2/)[/+(9N)-/+(9M-)] + 

r2AQ{x,y){f-{qi,)- r{qM-)l (6) 

where qM- is the state vector of the adjacent domain at the interface of degree M, Ti^z{T2,i) 

denotes TX{T2) and T^iri) respectively, ri and T2 (TS and T^) are the penalty parameters 

for the right(left) in x-direction and top(bottom) in y-direction respectively. Q{x,y) is a 

polynomial which vanishes at all of interior points of the domain and is equal to 1 at the 

four interfaces. Note that the boundary operator B does not appear in the scheme. Let A 

be the linearized Jacobian matrix (around a state vector qo) of two inviscid fluxes 

where n = {ux^Uy) is the unit outward normal vector. Since the matrix A is symmetric, 
there exists S such that 

A = SAS-\ (8) 



where A is a diagonal matrix composed of eigenvalues of A. Then A =^ A'^ + A and 

A"^ = SA^S"^. A"^ is defined as in previous section. Splitting A yields 

f^^A^qo,. (9) 

where /^ is obtained from the linearized state. 

Remark 1 Since n = {HX, Uy) is taken to be outward normal vector, the stability condition 

(6) is now given by 

2ul,ri<l,    2ujj,T2>l,    2ujl^n<l,    2a;^r4 > 1, 

^l/n + ^Mn = i>   ^N'^2 + w^Ta = 1. (10) 

When dealing with the Navier Stokes equation, we keep the penalty form for the Euler 

fluxes and add a penalty term for the viscous fluxes. The stability of this procedure stems 

from the fact that the Jacobian matrices for the full reactive Navier-Stokes equation can 

be symmetrized by the same similarity transformation (see Appendix_B in [17]). Thus we 

get the system: 

dqN     dl^F     OING   _   DINF^     OING, 

dt dx dy dx dy 

ri,3Q{^,y)[f^{qN)-f^{qM-)] + 

T2AQ{x,y)[f~{qN) - /"(gM-)] + 

T6,8<5(X, y)[Au ■ QAT - A^ • QM-] + 

^- ^- ^^ ^ ■     ■---^   ■■ ''^^-'''-------^^^^ ;:---(il);.- 

Here f^ are same as defined in the previous section and the Jacobian matrix vector A^ is 

given by 

and 

q=(g,g),     dci= {qx,qy), (13) 

where again q_ and 5q_ denote the adjacent domains state vectors and their derivatives. 

Note that the penalty terms A^ • 9q does not appear in [9, 47, 48]. The penalty parameters 

T5J and r6,8 are defined in the same way as in the previous section. To seek stable penalty 

parameters we split the inviscid and viscous fluxes and keep the stability conditions of 

''"1,2,3,4 for the inviscid flux as in Theorem 1. The stability conditions of r^j and rg^g are 
given in the following Theorem : 



Theorem 2  The penalty method for the Navier-Stokes equations (12) is stable if the 

penalty parameters TJ , j = 1...4 are as in Theorem 1 and the rest satisfy: 

uj^Te   <   0, 

UNTQ - U)MTS    =    0, 

1 4- UJNTS - UMTT   =   0, 

(  +  ) ul^T^ - 2T7 + iUNTe +   <0 ..    (14) 

in addition to the conditions specified for TI,T2,TS and T4 in Theorem 1. 

Note that these conditions are given independently of the local flow properties. And 

moreover, the penalty parameters of each domain are constrained by its adjacent domain. 

Remark 2 For ft to be outward normal vector the condition (16) is now given by 

^NT& < 0,      UNTQ + (^MTS =0,       1 + WjvTs + UMTT = 0, 

(— + —) OJIJT^ + 2T7 + iojNTe + < 0 (15) 

with the conditions (11) 

The averaging method for the N-S equations can be presented as 

dq     dF     dG dF,     dGu -^-I 1 =   —1. _| L^ 
dt      dx      dy dx       dy 

^^ ' r2,i(^x,y)[f'^i^-f'-{gJ}]+'^'^ 

n,rQ{x, y)[A, • ^^q - A, • d\^] + 

Te,8Q{x, y)[A^ -dq- A^- dq-], (16) 

where 5^q is the second derivative of q in either x ox y direction. 

Theorem 3 If n = T3 = |, T2 = T4 = \, r^ = TJ = \, and TQ — -rg = "2:3^, then the 

approximation is continuous at the interface and the scheme (17) is stable. 

To ensure the stability of the scheme at some particular collocation points where the 

solution become singular and unstable, we use the averaging method adaptively at selective 

grid points. In particular, we switched from the penalty method to the averaging when the 

following criteria was satisfied: 

8 



or 

l-P-^-l>C (IR) \P + p_\ -    "■"^^ ^^°) 

where Cave is a non-negative constant. Note that Cave = 0 leads to the averaging method, 

whereas a large Cave results in the penalty method. For the value of Cave used in this 

paper, we found out that there were very few points in which one needs to switch from the 

penalty to the averaging procedure. Moreover this happened only at very few time steps. 

4    Uncertainty Analysis in Supersonic Flow Problems 

It is well known that the steady state of an isentropic flow in a double-throated nozzle is 

not unique. In fact, the steady state flow can be either completely supersonic or completely 

subsonic or a flow containing a shock wave connecting the supersonic branch of the solution 

to the subsonic branch, the location of the shock wave depends uniquely on the initial 
condition. 

In [51] a model equation, having the same features, was considered and analyzed, and 
in [11] the model has been generalized. 

In many applications there are uncertainties involved in the initial conditions and the 

question arises: what can be said about the shock location if there are uncertainties in the 

initial conditions. We note that while randomness enters through the initial conditions in 

this problem, random effects can generally enter into practical problems through boundary 

conditions, initial conditions, the domain geometry, missing variables and fluid properties 
rfdfi. Sucb random effets'inrilffi^iapaitsl^tQd^ 

new methodologies to model and analyze the impact of such uncertainties. In our case 

we are interested in the statistics of some derived quantities (e.g., the shock position of a 

solution). Such are often hard to accurately compute from the first few moments of the 
solutions. 

In a preliminary work, generalized polynomial chaos methods were implemented to 

compute the probability density function (PDF) of the shock location for the cases where 

the initial conditions are assumed to be different random processes (fields). 

Our preliminary conclusions are: 

• Polynomial chaos (PC) expansion modes are smooth functions of the spatial vari- 

able X, although the individual solution realizations are discontinuous in the spatial 
variable x. 

• The solution is discontinuous in the random variable space at a fixed point x. Filtering 

is necessary for the stability of the scheme, because generalized polynomial chaos 



methods are spectral representations of the random processes. 

• When the variance of the initial condition is small, the probability of the density 

function (PDF) of the shock locations is computed with high accuracy. Otherwise, 

many PC expansion terms are needed to produce reasonable results. As first noted 

by Chorin, this is due to the slow convergence of PC expansions of discontinuous 

functions in the random fields. 

• The biggest absolute eigenvalue of the Jacobi matrix of the system increases quickly 

with respect to the number of PC terms used in the expansion. This might cause 

large dissipation for some numerical schemes. The fast increasing size of the system, 

when using more PC terms, could also be problematic if one wants to solve the 

system with a high order numerical scheme using characteristic decomposition, e.g., 

high order ENO or WENO. 

The fact that the coefficients in the PC expansion are smooth is surprising. It seems 

although the solution contains a shock, we can compute it by embedding it in a random 

space and computing smooth solutions in that space. We plan to study whether this might 

be a general procedure in computing shock waves. 

5    Richtmyer-Meshkov Instabilities 

In the mixing of fuel with oxidants in SCRAMJET engine, the fuel jets are under impulsive 

acxeleralion :l3y iShc«:K!v^^ 

the fuel-oxidants interface and the breakup of fuels into finer droplets. Inertial Confinement 

Fusion Program (ICF) uses high energy pulse source such as X-ray and laser to illuminate 

the target sphere in order to achieve auto fusion ignition on the National Ignition Facility. 

It is crucial to achieve an uniform compression of the target sphere as possible for maximum 

efficiency as the impulsively accelerated non-uniform sphere surface by a shock wave causes 

a non-uniform pressure profile over the sphere. 

The source of these phenomenon known as Richtmyer-Meshkov Instability is related to 

the well known fluid instability studied theoretically by Richtmyer and experimentally by 

Meshkov. The Richtmyer-Meshkov Instability (RMI) results from a impulsively accelerated 

interface of materials with different densities under perturbation. This form of instability is 

different than the closely related fluid instability known as the Rayleigh-Taylor instability 

in which the material interface is under constant acceleration force such as gravity. The 

vorticity generated by the cross product of the pressure gradient and the density gradient 

deforms the and amplifies the interface perturbation and grows in time. The penetration of 

in 



the heavier fluid into lighter fluid form spike and bubble vice versa. Growth of the interface 

amplitude and secondary shear instability promote the onset of turbulence mixing and 

enlarged in time. The RMI is encountered in a variety of physical contexts such as, but 

not limited to, those described above. Reader are referred to extensive literature available. 

In order to capture the shock-interface interaction and the fine scale structures within 

the turbulence mixing zone, high order methods are highly desirable. Among the high 

orders schemes considered. Spectral methods (Spectral) and Weighted Essentially Non- 

Oscillatory finite diff"erence schemes (WENO) are considered in this study. High Order 

compact scheme is another candidate but was not considered in this study. High order, in 

the sense, means order of accuracy is at least greater than two. In this study, we devise the 

algorithms based on the methods mentioned above. To our knowledge, this is probably the 

first time these high order methods are implemented for the study of the RMI. In order to 

evaluate the performance of the devised schemes, only single mode interface perturbation 

will be included in this study. 

From the point of view of the numerical calculation, we can break the RMI problem 

into two parts. 

First, we have the issue of reliably calculating the motion of a possibly very strong 

shock wave, and second we have the issue of reliably calculating the mix that ensues after 

this shock wave accelerates the interface. It is in this second area of calculating the ensuing 

mix where high order numerical schemes offer unparalleled efficiency. This efficiency comes 

from the very fundamental fact that the truncation error in the differentiation operators 

can be made much smaller by increasing the order of the scheme than by increasing the 

number of grid point| J^]£:greby;_m^^ less 
expensive with high order schemes. 

Secondly, when the flow variables are differentiable and contain significant structure, 

i.e., when a Fourier representation of the flow variables decays slowly, then the truncation 

error is again highly favorable to high order schemes. 

For these two reasons, if one has structure, with or without shocks, high order schemes 

are orders of magnitude computationally more efficient than low order schemes. This leads 

us to the issue of high order schemes in the presence of strong shocks. Of course, if one has 

only shocks and no structure, then there is no reason for using high order schemes. So, we 

assume the existence of structure in the flow variables. 

When shocks are present, there has been a great deal of technology developed over 

the last few decades that insures that one can obtain a high order accuracy away from 

the shock even though the calculation is, as it must be, first order at the shock. Here we 

explore two such high order schemes, the Weighted Essentially Non-oscillatory (WENO) 

scheme and spectral methods.   The WENO scheme and its predecessor the Essentially 
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Non-oscillatory (ENO) schemes were designed exactly for problems such as RMI and are 

extremely robust even for very strong shocks. We would like to stress the importance of 

comparing numerical results obtained by algorithms based on different philosophy. The 

confidence of the numerically converged results can be greatly enhanced by their agreements 

of the numerical results. In our case, spectral methods is global in nature as opposed to 

the finite difference scheme which is local in nature as seen in the following sections. 

In a series of papers [32, 33, 34, 35, 36], it was shown that given the spectral approx- 

imation to a piecewise smooth function one can construct an exponentially convergent 

approximation to the function. This result had been proven for Fourier, Chebyshev, Leg- 

endre and spectral methods based on spherical harmonics. 

For the ease of presentation, we discuss the results for Fourier approximations, since 

nothing essential is lost in the Chebyshev case. 

The exponential filter offers the flexibility of changing the order of the filter simply by 

specifying a different 7. One does not have to write a different filter for different order. 

Thus varying 7 with N yields exponential accuracy according to [59]. 

The above defined filters do not completely remove the Gibbs phenomenon as oscil- 

lations still exist in the neighborhood of the discontinuities. In order to recover the full 

accuracy in any region where the function is continuous, one has to use a different idea. In 

[35] it is shown how to use a known set of 2N + 1 Fourier coeflUcients to obtains the coeffi- 

cients of a different expansion (based on the Gegenbauer polynomials). The new expansion 

converges exponentially in any smooth region. 

In practice, when solving differential equations one uses the exponential filter at every 

time step and the Gegeiibaaei" nlteir at the end of the cafculaticns as^-a posiprGcessor.     - - 

When spectral methods are applied to nonlinear hyperbolic equations in conservation 

form the problem of an entropy satisfying solution arises. In fact, there is no artificial 

dissipation in the method to indicate that the solution is a limit of a dissipative process. 

One clearly needs to add artificial dissipation. However this dissipation must be spectrally 

small in order not to affect the overall accuracy. This problem had been addressed in 

[56, 57, 44]. 

It has been shown that with a suitable addition of (spectrally small) artificial dissipation 

to the high modes only, the method converges. In this paper we used one version of the 

above idea: the Super Vanishing Viscosity method (SVV) suggested by Tadmor [56, 57]. 

The interaction between the shock and the interface, generates a shock triple point 

along the gaseous interface. Localized sharp gradient could cause numerical instability if 

insufficient localized physical/numerical dissipation existed there. For the Spectral scheme, 

instabilities were observed in the case of under-resolved simulation and/or using too high 
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order of the global filtering. Global strong filtering would keep the scheme stable at the 

cost of smoothing out all fine scale physical structures, which is highly undesirable when 

resolution of fine scale structures is essential for understanding of the issue of shock induced 

mixing. 

Since this is a local phenomenon, a sufficient strong local dissipation or Local Adaptive 

Filtering would be needed to keep the scheme stable. The location of those collocation 

points where the density p <= ptoi will first be located and marked for further processing. 

A global strong filtering, for example 7 = 2 will be used to reduce the magnitude of the 

oscillations at those points only. In all the cases studied here, ptoi is set to be \pmin where 

Pmin is the expected minimal density value, pmin = Pxe for example. 

Our experiences with this class of problem indicated that the local adaptive filtering 

only applied on a few (in the range of 1 to 7) grid points around the shock triple point 

only as the shock propagated along the gaseous interface in the earlier time. Otherwise, 

the Spectral scheme remained stable for all other time and no local adaptive filtering is 

needed. 

After the evaluation of the spatial operator, the third order TVD Runge-Kutta scheme 

of Shu and Osher [54] was used to solve the system of ODE's. It has the form of 

U^   =   hstJ^ + U' + AtLiU')) 

f7"+i   =   l(f7" + 2f72 + 2AtL(t/2)). 

L is the spatial uperatDi. [/"ariu 5™'"^ are the data arrays at the n.^th and (w f l)-th time 

step, respectively, t/^and U'^ are two temporary arrays at the intermediate Runge-Kutta 

stages.   The scheme is stable for CFL < 1.  This Runge Kutta scheme is a low storage 
—* —*- 

scheme as it can be rewritten in such a way that only two arrays [/" and [/^ are needed. 

We summarize the overall solution procedures of the algorithm as follow, 

• Periodical Domain is specified in the y direction and symmetry property of the prob- 

lem is exploited to reduce the amount of computational operations by half. 

• Spatial Algorithm : 

1. Combined Chebyshev (x) and Fourier {y) collocation method (Spectral), 

- Diflferentiation and Smoothing operations are performed via an optimized 

library PseudoPack [13]; 

- A lO'th and 9'th order exponential filter used for the diff"erentiation and 

solution smoothing respectively; 
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- KoslofF-Tal-Ezer mapping [24, 21] for the Chebyshev collocation methods. 

— An adaptive local smoothing. 

2. Fifth order WENO finite difference scheme (WENO-LF-5) with Lax-Frederick 

flux splitting. 

• The third order TVD Runge Kutta method by Shu and Osher [54] is used to advance 

the solution in time. 

A series of numerical simulations are carried out to investigate the convergence prop- 

erties of both the Spectral scheme and the WENO scheme. Simulations, using various 

interface thicknesses and resolutions, are computed and terminated at some representative 

time after the shock had transmitted sufficiently far away from the interface and before 

exiting the physical domain. It allows the development of vortical rollups of the gaseous 

interface. Vorticities are generated by the cross product of the pressure gradient of the 

shock and the density gradient of the gases. The final time is set to i = 50 x lO'^s for 

Lx = 50 cm and t = 143 x 10~^s for Lj; = 150 cm. 

As evidenced from the results of the Spectral and the WENO calculations shown below, 

the following major features of the Richtmyer-Meshkov instability can be observed (see 

figure 3) at time i = 50 x 10~^s, namely, 

• Wave generated by the shock refraction behind the gas interface in Box 1. 

• The penetration of the heavy (Xe) to light (Ar) fluid causes the deformation of the 

interface lBto."larpe,ni.ushToom shape structiires„in Box 2 .andthe.opposite in Box 5. 

They are referred as Spike and Bubble respectively, in the literatures. They move in 

the opposite direction relative to each other and form a ever larger turbulence mixing 

zone. 

• Pressure wave along the transmitted shock in Box 3. 

• A small jet and its vortical structure located in Box 4. The contact discontinuity 

develops into a more complicated vortical rollups in a flner and long term simulation 

possibly caused by the Kelvin-Helmholtz instability. 

• Vortical rollups of the gaseous interface inside Box 6. 

The global large and median features (Box 1, 2, 3, 4 and 5) are well captured accurately 

by both numerical schemes for a given resolution. It is unclear, however, if the smaller 

rollups along the gases interface (Box 6) presented in the high resolution/high order cases 

are physical due to the non-dissipative nature of the Euler equations or numerical due to 
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Figure 1: The numbered regions enclose the most prominent flow features of the Richtmyer- 

Meshkov instability at time t = 50 x lO'^s. 

the oscillatory nature of the numerical schemes or both.  More researches are needed to 

answer this question fully. 

We shall first examine the convergence property of both the Spectral scheme and the 

WENO-LF-5 finite difference scheme. For this, we used a thicker interface with 6 = 

0.6 cm to establish the convergence of the numerical schemes of the large and medium 

scale structures (box 1, 2, 3, 4 and 5 in figure 3). This avoids the possible contamination 

of numerical artifacts due to high gradients generated along the shock-interface interaction 

and bypass the issue of under-resolved fine scale physical structures. Furthermore, the 

spectral solutions are not post-processed by any existing post-processing algorithms to 

remove the Gibbs oscillations. 

Convergence Stu^y : ^ =^0.6 cm _      ^ ^ 

The density p and velocity V of the solution of the Spectral and WENO-LF-5 runs are 

shown in figure 4 at time t = 50 x 10"^ s with various resolutions. 

It can observed that the large and medium scale structures such as the transmitted 

shock, the location of the triple point, the shocked-interface velocity, pressure waves and 

vorticity generation, are basically in excellent agreement with each others. The weak 

vertical wave located downstream behind the interface is an left over entropy wave from 

the initial shock condition. 

Convergence Study : 6 = 0.2 cm 

The interface thickness is further reduced significantly from 5 = 0.6 cm to 6 = 0.2 cm. 

The density p and velocity V of the solution of the Spectral and WENO-LF-5 runs are 

shown in figures 5 and 6 respectively, at time t = 50 x 10~^ s with various resolutions. 

Similar to the previous case of 5 = 0.6 cm, it can be observed that the large and median 
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Figure 2: Convergence Study 5 = 0.6 cm : Density (Top Row) and V-Velocity (Bottom 

Row) contour plot of the Richtmyer-Meshkov instability as computed by the Spectral 

scheme and the WENO-LF-5 scheme. Domain length in a; is L^ = 5 cm. The interface 

thickness 6 = 0.6 cm. The final time is t = 50 x 10"^s. The resolution of the Spectral 

schemes are 256x128 (Top Left), 512x256 (Top Right) and 1024x512 (Bottom Left) and 

the WENO scheme is 1024x512 (Bottom Right). 

scale structures such as transmitted shock, shocked-interface velocity and shock triple point 

are basically in excellent agreement with each others. Some discrepancies of the fine scale 

structures along the gaseous interface, as can be expected for numerical simulation of the 

Eiilnr cqu^tic^s which is sensitive to pertur^^ 

Snapshot of the evolution of density and velocity flow fields at several immediate times 

are illustrated in figure (7), for the Spectral scheme and in figure (7) for the WENO scheme. 

The contour levels are the same and constant for both schemes in all plots. 

The Mach number M, the Atwood number At and the interface curvature play an 

important role on the growth of perturbed amplitude on the interface. In the particular 

set of parameters studied here with high Mach number M = 4.46 and median Atwood 

number At ^ 0.54, a formation of triple-shock configuration along the interface indicates 

that shock-interface interaction is in the "hard" regime. A "hard" regime, as quoted from 

Zaytsev etc. is "the propagation of secondary shocks across the flow that is accompanied 

by the formation of breaks and triple configurations on the refracted and reflected shocks". 

The triple-shock formation can be observed easily in the early time <Ri 30 x lO^^s. 

As the Mach number increases, high order schemes tend to break down as the solution 

develops singularity and/or high gradients in time in which the numerical schemes becomes 

more difficult to resolve them.  For the spectral methods, we have developed a Spectral 
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Figure 3: Convergence Study 5 = 0.2 cm : Density (Top Row) and V-Velocity (Bottom 

Row) contour plot of the Richtmyer-Meshkov instability as computed by the Spectral 

scheme. Domain length in a; is L^ = 5 cm. The interface thickness 5 = 0.2 cm,. The final 

time is i = 50 X 10~^s. The resolution of the Spectral schemes are 384x192 (Top Left), 

512x256 (Top Right) and 1024x256 (Bottom Left). 

Adaptive Domain Algorithm which adjusts the size of the computational domain in time 

in order to resolve the fine scale structures at high Mach number as they are developing in 

time. In figure (8), we presents the density for the Richtmyer-Meshkov instability for the 

case similar to the previous section except that the Mach number is increased from Mach 

In figure 9 we show the preliminary result of the density isosurface plot of the RMI 

with a Mach 4.46 shock and a three dimensional random pertubation interface separating 

the Argon and Xenon gases. 

6    Recessed Cavity Flameholders 

Recessed cavities provide a high temperature, low speed recirculating region that can sup- 

port the production of radicals created during chemical reactions. This stable and efficient 

flame-holding performance by the cavity is achieved by generating a recirculation region 

inside the cavity where a hot pool of radicals forms resulting in reducing the induction time 

and thus obtaining the auto-ignition [6, 61]. Experiments have shown that such efficiency 

depends on the geometry of the cavity such as the degree of the slantness of the aft wall and 

the length to depth ratio of cavity L/D. Thus one can optimize the flame-holding perfor- 

mance by properly adjusting the geometrical parameters of the cavity flame-holder system 
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Figure 4: Convergence Study 5 = 0.2 cm : Density (Top Row) and V-Velocity (Bottom 

Row) contour plot of the Richtmyer-Meshkov instability as computed by the WENO-LF- 

5scheme. Domain length in a; is La; = 5 cm. The interface thickness 5 = 0.2 cm. The 

final time is t = 50 x 10~S. The resolution of the WENO-LF-5 schemes are 256x128 (Top 

Left), 512x256 (Top Right) and 1024x512 (Bottom Left). 

for a given supersonic flight regime. There are two major issues of such cavity flame-holder 

system that need to be investigated ; (1) What is the optimal angle of the aft wall for a 

given L/D? a,nd (2)How does the fuel injection interact with cavity flows? An answer to 

these questions require both a comprehensive laboratory and numerical experiments. 

-    -Results of SBveraFntim<incM"^u3ie£h3ve^sfic^^ fecirculation - 

inside cavity is enhanced for the lower angle of cavity compared to the rectangular cavity. 

The present study, however, gives more accurate and finer details of the fields than those 

done by lower order numerical experiments. We show that a stationary recirculation region 

is not formed inside the cavity contrary to what the lower order schemes predict. A 

quantitative analysis made in this study shows that the lower angled wall of the cavity 

reduces the pressure fluctuations significantly inside the cavity for the non-reactive flows. 

We obtained a similar result for the reactive flows with the ignition of the fuel supplied 

initially in the cavity. 

In the SCRAMJet community, a cavity with the length-to-depth ratio L/D < 7 ~ 10 

is usually categorized as an 'open' cavity since the upper shear layer re-attaches at the 

back face [6]. In this work, we choose the L/D of the baseline cavity to be 4 and thus the 

open cavity system is considered. The coordinates of the cavity are (7cm, —1cm) for the 

upper left and (11cm, —2cm) for the right bottom corners of cavity. With the length of the 

neck of the cavity fixed to be 4cm, we consider three different angles of the right corner 
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Figure 5: Snapshot of evolution with the Spectral (Leftmost two figures) and WENO-LF-5 

(Rightmost two figures) schemes and S = 0.2 cm : 

In the leftmost two figures (Spectral), the Density (Left) and Velocity (Right) contour 

plot of the Richtmyer-Meshkov instability as computed by the Spectral scheme at time 

t = 12.5 X IQ-^s, 25.0 X 10"^, 31.3 x lO^S, 37.5 x lO'^s, 43.8 x 10"^ and 50.0 x 10"^ are 

showed. The resolution of the Spectral scheme is 1024x256. 

In the rightmost two figures (WENO-LF-5), the Density (Left) and Velocity (Right) con- 

tour plot of the Richtmyer-Meshkov instability as computed by the WENO-LF-5 scheme at 

time t = 13.0 x 10"^, 24.7 x lO^S, 31.5 x 10"^, 37.1 x lO-^s, 43.2 x 10~^s and 50.0 x lO^S 

are shown. The resolution of the WENG-LF-5 schems is^l024x5I2.  ^       -  -• •.™-    . 

Domain length in x is L^; = 5 cm. The interface thickness 5 = 0.2 cm,. 

of the floor of the cavity ( 60,45 and 30), we then compare each one with the case of the 

rectangular aft wall. The fluid conditions are given as foUowings; the free stream Mach 

number M = 1.91, total pressure P = 2.82{atm), total temperature T = 830.6(7^) and 

normalized Reynolds number R^ = 3.9 x 10^(l/m). Note that the Reynolds number is here 

normalized and has a unit of 1/[length], also the Reynolds number based on the cavity 

dimensions is O(IO^). The boundary layer thickness scale is 5 = 5 x 10~^(m), and finally, 

the wall temperature is T^ = 460.7835(/i'). The initial configuration for the baseline cavity 
system is shown in figure 10. 

We have conducted two different experiments for each of the following cases : (1) non- 

reacting cold flow, and (2) reacting flow . We use 9 and 17 subdomains for both cases 1 

and 2. For the outflow conditions at the exit of the system and at the upper boundary, 

we mainly use a semi-infinite mapping in order to reduce the possible reflections at the 
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Figure 6: High Mach number case 6 = 0.2 cm : Density contour plot of the Richtmyer- 

Meshkov instability as computed by the Spectral scheme. The Mach number M=10. Do- 

main length in x is L^; = 30 cm. The interface thickness 5 = 0.2 cm. The final time is 

t = 125 X 10~^s. The resolution of the Spectral schemes are 2304x256. 

boundaries. The characteristic boundary conditions are also applied and will be discussed 

in the next section and compared to the mapping. For the case of the reactive flows, the 

cavity was initially filled with Hydrogen fuel with fuel-to-total gas ratio of 0.5. The order of 

the polynomial of approximation in y direction in the domain beside the wall is taken large 

enough to resolve the boundary layer well. Finally the adaptive filtering is turned on if the 

masL; fraction of Hydrogen aiicf Oxygen'Sceed'the i^ < 1.09,—0.02 <" 

/02 < 0-25 and the temperature exceeds the range of 300(/^) <T < 3500{K). As the shear 

layer and the complex features of the flows develop, the adaptivity criteria for applying 

the local smoothing is satisfied at some points. In the calculations, we use the 3rd and 2nd 

order local filtering for the non-reactive and reactive flows respectively. It turns out that 

the local smoothing was applied in very few points at the upper corner of the cavity wall. 

For the adaptive averaging, we use the criteria constant Cave such that the difference 

of the state vectors (or pressure) between the two adjacent domains is less than 10%. In 

figure 11 the Penalty Navier-Stokes equations were considered for the non-reactive cold 

flows. As evident from the contours of the density, the approximations were well matched 

at the interfaces. Here the outer boundary was approximated by using the characteris- 

tic conditions of the inviscid fluxes. The adaptive averaging, with the given adaptivity 

conditions above, took place at only a few points. The characteristic boundary condi- 

tions using the inviscid fluxes yield good results for both the problems of the density peak 

propagation and the non-reactive cold flows.  As in figure 1, we observe that there exist 
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Figure 7: Density isosurface plot of the RMI with a Mach 4.46 shock and a three dimen- 

sional random perturbation interface. The gases are the Argon and Xenon 
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Figure 8:  The initial configuration for the baseline cavity system. 

penalty parameters satisfying the stability conditions that may induce reflecting modes at 

the interfaces. Figure 12 shows the pressure history of the non-reactive cold flows for the 

various angles of the aft wall at two different locations inside the cavity, i.e. at the center, 

(x, y) = (8.5cm, —1.5cm), and at the middle of the floor (x, y) = (8.5cm, —1.9cm). 

These figures show that the pressure fluctuations in cavities with lower angle of the aft 

are weaker than in cavities with higher angles. It is also shown that the attenuation of 

the pressure fluctuations are obtained both at the center and the middle of the floor of 

the cavity. It is interesting to observe that the patterns of the pressure fluctuations for 

a given angle at different locations are different depending on the angle. In the case of 

the 30 degree aft wall, the pressure fluctuations are almost the same at the two locations 

considered whereas the case of 45 degree shows a difference in the patterns of the pressure 
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Figure 9: The non-reactive cold flows with the penalty Navier-Stokes equations: the density 

contours are given in this figure at t = 0.25ms. 17 domains are used and the boundaries 

of each domain are shown. 
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Figure 10: Pressure history for non-reactive flows: the left panel represents the pressure 

history at the center of the cavity and the right panel at the middle of the floor of the cavity. 

Each panel shows the case of 90, 60, 45 and 30 degree cavity walls from top to bottom. 

fluctuations between, the.,t^ 
greater than that at the center after some time. 

Figure 13 shows the pressure history when the heavy global filter is applied (in this case, 

the 4th order filter was used). Unlike the previous case illustrated in figure 12, where the 

6th order global filter is used, the pressure fluctuations eventually decay out and a large 

recirculation zone is formed inside the cavity without any severe pressure fluctuations. 

Note that the scale in the left panel shown is the same as in figure 12 while the right panel 

is shown in a smaller scale for a closer look. This figure shows that the large recirculation 

zone(s) formed inside the cavity obtained by the lower order numerical scheme is induced 

not physically but rather artificially due to the heavy numerical dissipations. This is clearly 

shown in figure 14. In this figure a large recirculation zone is observed - this zone is formed 

earlier than this streamlines are captured - when the 4th order filter is used (left figure) 

and an almost steady state is already reached as the pressure history indicates in figure 

13. We find from the numerical results that the large recirculation is very stable once it 

forms. This large recirculation and the steady state solutions are not observed in the case 
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Figure 11: Pressure history of the non-reactive flows with the use of the 4th order filter: the 

left panel represents the pressure history at the center of cavity and the right panel shows 

the -left panel in a smaller scale. Each panel shows the case of 90, and 30 degree cavity 

walls from top to bottom. Note that the scale of the right panel is different from the left. 

Figure 12: Streamlines: the left figure shows the streamlines at t = 1.685ms for the global 

filtering order 7 = 4 and the right att = 2.38ms for 7 = 6. 

of 7 = 6(right). For the case of 7 = 6 instead of the large single recirculation zone, smaller 

scale vortex circulations are formed and they are interacting with each other, never reaching 

the steady state with time. This result shows that for these sensitive problems, high order 

accuracy should be used in order to minimize the effect of the numerical dissipation. 

Figure 15 shows the case of the reactive flows for the 90 and 30 degree aft walls. Similar 

•features of the pressure-fluctuations ■^reshown-as in-the-iion-reactiveflows;^ However-the- 

pressure fluctuations are much more attenuated for both the 90 and 30 degree walls than 

in the non-reactive cold flows. In the reactive cases Hydrogen fuel, which was initially 

supplied inside the cavity was consumed. As time elapses, the fuel is consumed out with 

the production of the water for these cases. 
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Figure 13: Pressure history for reactive flows: the left panel represents the pressure history 

at the center of cavity and the right panel at the middle of the floor of cavity. Each panel 

shows the case of 90 and 30 degree cavity walls from top to bottom. 

These results demonstrate that simulations of cold flows do not necessarily shed light 
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Figure 14:  The water contour of the reactive flows: the lefl the water density contour is 

given in the left figure and its streamlines in the right figure at t = 0.135ms. 

on the behavior of reactive flows. 

Figure 17 shows the density contours and streamlines for the 90, 60, 45 and 30 degree 

walls at the instant time t = 2.4ms. As shown in the figure, the shear layer is becoming 

weaker as the degree of angle of the aft wall and the flow fields are becoming more regular- 

ized for the case of the lower angle. And note that the density compression at the corner 

of the aft wall is also becoming weaker for the more slanted wall cases. 

Reactive flow 

Figure 18 shows the water contour inside the cavity for the different angles at different 

time. Here we define the region where the flames are generated to be same as the region 

where the water is produced. As the Hydrogen fuel is consumed, the water is produced and 

starts to be expelled from the cavity to the main channel. The flame-holding efficiency is 

enhanced if the chemical radicals (water in this case) are stably circulating and long lasting 

before they are expelled from the cavity. Figure 18 shows that the lower angled aft wall 

(30 degree in this case) maintains more water than the 90 degree wall at a given time. The 

.figure also shows that.the lower angled aft wall holds the flame.(waterJn this,pase) longer ,,, 

than the 90 degree wall - in the last figure in fi^gure 18 at f = 2.26ms, the most water is 

expelled and the only the small amount is left in the left corner while the 30 degree wall 

cavity holds the water still through the cavity. These results imply that the flame-holding 

efficiency can be increased by lowering the angle of the aft wall of the cavity. 

Figure 19 shows the streamlines corresponding to the each case of figure 18. Note that 

compared to the non-reactive cases, the shear layers are less developed for the reactive 

cases. As the figures of the pressure fluctuation history and figure 19 indicate, the shear 

layers are weak for both the 90 and the 30 degree walls in the reactive cases. 
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Figure 15: T/ie density contour and the streamline of the non-reactive flows: the left column 

shows the density contour for 90, 60, 45 and 30 degree walls from top to bottom and the 

■"igkt cohimn shows the corresponding-streamlines at t = 2.43ms. The ma-xim.um contour 

level is 1.8 and the minimum 0.5 with the level step size 50. 
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